
Published By: Fifth Dimension Research Publication https://fdrpjournals.org/ 23 | P a g e

,

International Journal of Scientific Research in Engineering & Technology
Volume4, Issue6 (November-December 2024), PP: 23-26.
www.ijsreat.com ISSN No: 2583-1240

Decentralized Security Solutions for IoT Using Ethereum

Mohit Agrawal1, Monika Jareda2, Pradhum Malhotra3, Shreya Meena4, Bharat Modi5

1,2,3,4 Undergraduate Students, Department of Computer Science Engineering, Swami Keshvanand Institute of Technology

Management and Gramothan, Jaipur, Rajasthan, India.
5Associate Professor, Department of Computer Science Engineering, Swami Keshvanand Institute of Technology Management

and Gramothan, Jaipur, Rajasthan, India.

To Cite this Article: Mohit Agrawal1, Monika Jareda2, Pradhum Malhotra3, Shreya Meena4, Bharat Modi5, “Decentralized Security

Solutions for IoT Using Ethereum”, International Journal of Scientific Research in Engineering & Technology, Volume 04, Issue 06,

November-December 2024, PP: 23-26.

Abstract: The current IoT system has a security risk since all data is kept in a single location and all computing activities are done through

a central server. It is possible for data tampering and a single point of failure in a centralized IoT system. When the primary server fails, the

centralized IoT paradigm creates a single point of failure because a centralized system manages all IoT data from several linked devices. It is

a clear target for privacy and security concerns. To overcome these problems, the Ethereum Blockchain Technology is considered in this

chapter for securing the data through distributed and decentralized ways. The pre-processing for Ethereum node creation from a genesis

block, smart contract deployment, and performance metrics are presented

Key Word: Ethereum Blockchain, IoT, genesis block, smart contract deployment

I.INTRODUCTION

 Ethereum is a popular blockchain implementation that serves as a platform for smart contract execution .These smart

contracts can help with financial transactions and data storage on a distributed ledger .Gas and ether are two forms of Ethereum

currency. Gas is the ether that smart contract nodes must pay to run them. Ether is the Ethereum crypto-currency that may send

money and pay for gas to operate smart contracts.

 Similar to traditional paper contracts, smart contracts define the conditions of an agreement between two parties. They

automatically execute when the terms are met and eliminate the need for either party to know who is on the other side of the

transaction or for an intermediary. Ethereum introduces several concepts to enable, sending and receiving ether, executing smart

contract transactions, and reading data to and from the blockchain in general. To overcome the drawback of the IoT issues and

challenges, Ethereum based Blockchain network has been implemented. The Smart Contracts were created in Solidity 0.6.0.,

Ethereum Nodes are connected with the Geth (Go Ethereum) v1.10.2 CLI tool and Truffle (Node.js app) 5.1.30 is used to build,

compile and deploy Solidity-based Smart Contracts.

II.GENESIS BLOCK

Figure 1 Genesis Block in Ethereum Network

http://www.ijsreat.com/

Decentralized Security Solutions for IoT Using Ethereum

 Published By: Fifth Dimension Research Publication https://fdrpjournals.org/ 24 | P a g e

The genesis block is the first block of the entire chain and is named block 0 in the Ethereum network. Each block in the

blockchain is linked to the preceding block. Since the genesis block is the beginning of a block, there are no links behind it. It

has to be created manually for ethereum networks and contains a hash of zeros. This block is represented in the form of a

JSON file

The Ethereum network was built using a genesis file, as shown in Figure 1. The genesis block contains all the essential

information to configure the network as well as find related peers. It is the config file for the Ethereum network. The genesis file

is a simple JSON file that contains config thresholds.

Some of the fields in the genesis state file are as follows:

Config:

The file starts with the “config” block, which contains all the config parameters and thresholds that control the networks

basic operations.

Chain ID:
It protects the network from a replay attack. It acts as an offset to prevent attackers from deciphering continuous values in

network.

Homestead Block:
Homestead is the second major release of Ethereum (the first release is Frontier). If the value is 0, Homestead is used.

EIP150Block:

EIP stands for Ethereum Improvement Proposal. Ethereum is open-source so that proposals can be made in discussions and

code, and EIP150 is one such proposal that was accepted. This EIP took effect on block 2463000 and mainly increased gas prices

in response to denial-of-service concerns.

EIP150Hash:

The hash of the EIP150Block, which is needed for fast sync.

Difficulty:

This determines how difficult it is to mine in the Ethereum network. It is set to the lowest possible value when developing

on a test network, so waiting time is reduced for mining blocks.

Nonce & mix hash:

Nonce and mix hash are values, it allows to verify that a block has been cryptographically mined, and it is validated. The

mix hash is a 256-bit hash which proves when combined with the 64-bit nonce that a sufficient amount of computation has been

carried out on this block: the Proof-of-Work (PoW). Mix hash is added with the block header hash to form the complete block

hash. It is not relevant to a new private network, so it is set to 0.

III. PUBLIC ETHEREUM NETWORK

Genesis file is used to start a public Ethereum network. For a blockchain to operate, each Ethereum node must have the

same network ID.

Table 1 Public Ethereum Networks

Network Type Network ID Network Status

main Main 1 Online

morden Test 2 Retired

ropsten Test 3 Online

rinkeby Test 4 Online

 Table 1 shows that network ID 1 is reserved for the Ethereum main chain. In contrast, network ID 2 is reserved for the late

Morden test chain, network ID 3 is reserved for the Ropsten test chain, and network ID 4 is reserved for the Rinke by test chain.

IV. SMART CONTRACT

 The smart contract is designed and implemented using the Remix IDE and Geth Console, an extensive, open development

toolset and framework to facilitate the implementation of blockchain applications.

 As shown in Figure 2, the Smart Contract has various features that allow users to connect with the ledger, combining the

state database and the Blockchain. Smart contracts are implemented in a blockchain with unique addresses, which means that

transactions are signed off by nodes and addressed to smart contracts themselves to invoke a feature written in a smart contract.

The block contains the transaction hash value and the previous block hash value to ensure data consistency in the ledger. If the

ledger hosted by one peer tampers, it will not convince all the other peers; because the ledger is distributed across the network.

The transaction is appended to the block, and the ledger state is updated. In the end, the updated result for the ledger is returned

as a response to the question.

Decentralized Security Solutions for IoT Using Ethereum

 Published By: Fifth Dimension Research Publication https://fdrpjournals.org/ 25 | P a g e

Figure 2 Smart contract network interactions

V. TOOLS USED

Geth
 Geth (Go Ethereum) is a Go-based command-line interface for running an Ethereum node. Geth allows to join the Ethereum

network and send ether between accounts. For external listening, Geth uses port 30303. 8545 is the default port for internal

communication, such as between wallet and Geth. Geth 1.10.13-stable version was used to connect to the Ethereum network

through the command line

Web3J
 Web3J is a highly flexible, reactive, and type-safe Java and Android toolkit for dealing with smart contracts and interfacing

with Ethereum network clients (nodes). Web3J 4.8.2 is used to communicate with Ethereum nodes. Table 3.2 describes a few

commands that allow geth to attach peer nodes and start the mining process.

Solidity
 Solidity is a statically typed programming language used to create smart contracts on the Ethereum Virtual Machine (EVM).

Smart contracts are decentralized programs that operate on a peer-to-peer network with no central authority and allow for the

implementation of value tokens, ownership, voting, and other logic.

Remix IDE
 Smart contracts written in the Solidity language are simulated using the Remix IDE. The remix is a browser-based IDE

that can create and test smart contracts and aids to create and execute a smart contract. Moreover, several popular IDEs and text

editors have plugins and frameworks for creating and testing Smart Contracts.

Truffle
 Truffle is a smart contract deployment tool based on Ethereum. Truffle 5.1.50 was used to deploy the smart contract on the

Ethereum Network. Truffle is also used to get the smart contract address and specify the ABI. A few commands that allow truffle

to compile and deploy smart contracts are listed

MetaMask
 MetaMask is a cryptocurrency wallet that works with the Ethereum network through software. It lets users utilize a browser

extension or a mobile app to access their Ethereum wallet, which can subsequently engage with decentralized apps. MetaMask

8.1.3 browser extension was used for the Truffle with Remix link.

VI. RESULTS

 Data security in IoT systems using Ethereum Network with Geth console. As shown in Figure 5, accounts and private keys

are created in Ethereum Network using the Test RPC Ethereum emulator. The Genesis File initialization and account address

creation in Ethereum Network are shown in Figure 6 and Figure 7. The block information and transaction finally, the Performance

metrics of the Write/Read operation for 10k transactions in the Ethereum Network captured are shown in Figure

VII. PERFORMANCE EVALUATION

 The performance of the ethereum network was captured with the write and read test operations 10k transactions. The

performance metrics are verified in Transactions Per Second (TPS) and Time Taken (seconds) for device registration and data

storage. Transaction duration was measured in seconds, while transaction costs were computed in Ether. The system conducted

the performance tests with Ethereum Network,

Decentralized Security Solutions for IoT Using Ethereum

 Published By: Fifth Dimension Research Publication https://fdrpjournals.org/ 26 | P a g e

VII. CONCLUSION

 One of the primary concerns among IoT adopters is the security and privacy of data. Ethereum Blockchain Network is a

feasible solution for IoT data management and added encryption standards, safeguarding IoT data from unauthorized access. By

replacing the central authority, it provides an unchangeable ledger to ensure the reliability of transactions between linked nodes

on a distributed blockchain network. All transactions on the Ethereum network are public, allowing anybody to see the transaction

details. For mining the vast volume of data in this network, additional processing time and power consumption are required. To

overcome these problems in IoT with Ethereum Network, Quorum Blockchain Network (QBN)

REFERENCE
1. Verma, G.; Prakash, S. Emerging Security Threats, Countermeasures, Issues, and Future Aspects on the Internet of Things (IoT): A

Systematic Literature Review. In Advances in Interdisciplinary Engineering; Kumar, N., Tibor, S., Sindhwani, R., Lee, J., Srivastava, P.,

Eds.; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; pp. 59–66.

2. Patnaik, R.; Padhy, N.; Raju, K.S. A Systematic Survey on IoT Security Issues, Vulnerability and Open Challenges. In Intelligent System

Design; Satapathy, S.C., Bhateja, V., Janakiramaiah, B., Chen, Y.-W., Eds.; Advances in Intelligent Systems and Computing; Springer:

Singapore, 2021; pp. 723–730.

3. Roy, R.; Dheeba, J. Survey on Methodological Model of IoT in Digital Forensic. In Proceedings of the 2023 International Conference on

Intelligent Systems, Advanced Computing and Communication (ISACC), Silchar, India, 3–4 February 2023; IEEE: Piscataway, NJ, USA,

2023; pp. 1–6.

4. Suny, M.F.I.; Fahim, M.M.R.; Rahman, M.; Newaz, N.T.; Akhund, T.M.N.U. IoT Past, Present, and Future a Literary Survey.

In Proceedings of the Information and Communication Technology for Competitive Strategies (ICTCS 2020); Jaipur, India, 11–12

December 2020, Kaiser, M.S., Xie, J., Rathore, V.S., Eds.; Lecture Notes in Networks and Systems; Springer Nature: Singapore, 2021; pp.

393–402.

	I.INTRODUCTION

